JSS COLLEGE FOR WOMEN (Autonomous) Saraswathipuram Mysore-9

NATIONAL EDUCATION POLICY - 2020 (NEP-2020)

Model Curriculum Structures for Bachelor of Science (Basic and Honours) Programmes with Computer Science as Major Course

2021-22

DEPARTMENT OF COMPUTER SCIENCE

IIIA. Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka Bachelor of Science (Basic/Hons.) in subjects with practical with both subjects as majors

Sem.			ent Compulsory	Skill E	Skill Enhancement Courses (SEC)					
	(DSC) (Credits) (L+T+P)	Elective (DSE) / Open Elective (OE) (Credits) (L+T+P)	Courses (AECC),	Courses (AECC),			Value based (Credits) (L+T+P)			
I	Discipline A1(4+2) Discipline B1(4+2)	OE-1 (3)	L1-1(3), L2-1(3) (4 hrs. each)	Environmental Studies (2)		Physical Education for fitness(1)(0+0+2)	Health & Wellness (1) (0+0+2)	25		
II	Discipline A2(4+2) Discipline B2(4+2)	OE-2 (3)	L1-2(3), L2-2(3) (4 hrs. each)		SEC-1: Digital Fluency (2)(1+0+2)	Physical Education - Yoga(1) (0+0+2)	NCC/NSS/R&R(S&G) /Cultural (1) (0+0+2)	25		
		1		ion with Certificate	(50 credits)	1	1			
III	Discipline A3(4+2) Discipline B3(4+2)	OE-3 (3)	L1-3(3), L2-3(3) (4 hrs. each)	Constitution of India (2)	2)	Physical Education- Sports (1) (0+0+2)	NCC/NSS/R&R(S&G) /Cultural (1)(0+0+2)	25		
IV	Discipline A4(4+2) Discipline B4(4+2)	OE-4 (3)	L1-4(3), L2-4(3) (4 hrs. each)		SEC-2: Artificial Inte- lligence (2)(1+0+	Physical Education -Games (1) (0+0+2)	NCC/NSS/R&R(S&G) /Cultural (1)(0+0+2)	25		
		Exit option wit	h Diploma (100 credits) or continue the th	ird year with both the su	ıbjects as majors		•		
V	Discipline A5(3+2), Dis Discipline B5(3+2), Dis	•			SEC-3: SEC such as Cyber Security (2) (1+0+2)		23			
VI	Discipline A7(3+2), Discipline B7(3+2) Discipline B7(3+2) Discipline B7(3+2) Discipline B7(3+2)	• • • • •			SEC-4: Professional Communication(2)			24		
	Exit option	n with Bachelor of Arts,	B.A./ Bachelor of Scie	nce, B. Sc. Basic Deg	ree (146 credits) or Cho	ose one of the Disciplin	nes as Major			
VII	Discipline A/B-9(3+2) Discipline A/B-10(3+2) Discipline A/B-11(3)		DS-A/B Elective-1(3 DS-A/B Elective-2(3 Res.Methodology(3)				22		
VIII	Discipline A/B-12(3+2) Discipline A/B-13(3) Discipline A/B-14(3)		DS-A/B Elective-3(3 Research Project (6)					20		

Model Curriculum Structure

Computer Science as MAJOR with another Subject also as MAJOR (Table IIIA of Model Curriculum)

Sem	Discipline Specific Core Courses	Hou	r of	Discipline Specific	Hour of
	(DSC)	Teaching	/ Week	Elective Courses (DSE)	Teaching/
		Theory	Lab		Week
1	DSC-1: Computer Fundamentals and	4			
	Programming in C				
	DSC-1Lab: C Programming Lab		4		
2	DSC-2: Data Structures using C	4			
	DSC-2Lab: Data structures Lab		4		
3	DSC-3: Object Oriented Programming	4			
	Concepts and Programming in JAVA				
	DSC-3Lab: JAVA Lab		4		
4	DSC-4: Database Management	4			
	Systems				
	DSC-4Lab: DBMS Lab		4		
5	DSC-5: Programming in PYTHON	3			
	DSC-6: Computer Networks	3			
	DSC-5Lab: PYTHON Programming lab		4		
	DSC-6Lab: Computer Networks Lab		4		
6	DSC-7: Internet Technologies	3			
	DSC-8: Operating System Concepts	3			
	DSC-7Lab: JAVA Script, HTML, CSS Lab		4		
	DSC-8Lab: C# Programming Lab		4		
7	DSC-9: Computer Graphics and	3		DSE-1:	3
	Visualization			Any one from	
	DSC-10: Design and Analysis of	3		Discipline Specific	
	Algorithms			Elective Courses,	
	DSC-11: Software Engineering	3		Group – 1**	
	DSC-9Lab: Computer Graphics and		4	DSE-2:	3
	Visualization Lab			Any one from	
	DSC-10Lab: Algorithms Lab		4	Discipline Specific	
				Elective Courses,	
				Group – 2**	
				Research	3
				Methodology:	
8	DSC-12: Artificial Intelligence and	3		DSE-3:	3
	Applications	3		Any one from	
	DSC-13: Computer Organization and	3		Discipline Specific	
	Architecture			Elective Courses,	
	DSC-14: Data Warehousing and Data			Group – 3**	
	Mining			Research Project:	6
	DSC-12 Lab: AI Lab		4		

JSS COLLEGE FOR WOMEN (AUTONOMOUS) SARASWATHIPURAM MYSURU-570009

NEP Syllabus – B.Sc. for 2021-22 onwards

V	C	Corse	Title	Н	lours	/		1.			M	axim	um Ma	ırks			Total
Year	Sem	Code		,	Week	ζ	C	Credits		Th IA		Pr IA		Exam		Exam	Marks
				L	Т	P	L	T	P	C1	C2	C1	C2	Th	Pr	Duration	
I	I	GMA 280	Computer Fundamentals and Programming in C	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
1		GMA 280P	C Programming Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
	ш	GMB 280	Data Structures using C	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	II	GMB 280P	Data structures Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
	III	GMC 280	Object Oriented Programming Concepts and Programming in JAVA	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
II		GMC 280P	JAVA Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
	IV	GMD 280	Database Management Systems	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	1 V	GMD 280P	DBMS Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
		GME 280	Programming in PYTHON	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	1 7	GME 290	Computer Networks	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	V	GME 280P	PYTHON Programming lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
III		GME 290P	Computer Networks Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
		GMF 280	Internet Technologies	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	171	GMF 290	Operating System Concepts	4	0	0	4	0	0	20	20	-	-	60	-	2 Hours	100
	VI	GMF 280P	JAVA Script, HTML, CSS	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
		GMF 290P	C# Programming Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50

	Sem	Corse	Title	ŀ	lour	s/		redi	to		M	axim		Total			
Year	Sem	Code			Wee	k		ı eui	ıs	Th l	A	Pr I	A	Exar	n	Exam Duration	Marks
				L	T	P	L	T	P	C1	C2	C1	C2	Th	Pr	Duration	
		DSC-9	Computer Graphics and Visualization	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
		DSC-10	Design and Analysis of Algorithms	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
		DSC-11	Software Engineering	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
		DSC-9 Lab	Computer Graphics and Visualization Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
		DSC-10 Lab	Algorithms Lab	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
IV	VII	DSE-1	 Elective: Any one IoT Cyber Law and Cyber Security Web Programming - PHP and MySQL Clouds, Grids, and Clusters Software Testing 	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
		DSE-2	Elective: Any one Information and Network Security Data Compression Discrete Structures Open source Programming Multimedia Computing Big Data Research Methodology	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
				3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
	VIII	DSC-12	Artificial Intelligence and Applications	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
		DSC-13	Computer Organization and	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100

	Architecture														
DSC-14	Data Warehousing and Data Mining	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
DSC-12 Lab	AI	0	0	4	0	0	2	-	-	10	15	-	25	3 Hours	50
DSE-3	Elective: Any one	3	0	0	3	0	0	20	20	-	-	60	-	2 Hours	100
	Research Project	0	0	12	0	0	6	-	-	20	20	-	60	2 Hours	100

Model Syllabus for BSc (Basic and Honors), Semesters I and II

B.Sc.: Semester: I

Course Code: GMA 280	Course Title: Computer Fundamentals and
	Programming in C
Course Credits: 04	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Confidently operate Desktop Computers to carry out computational tasks
- Understand working of Hardware and Software and the importance of operating systems
- Understand programming languages, number systems, peripheral devices, networking, multimedia and internet concepts
- Read, understand and trace the execution of programs written in C language
- Write the C code for a given problem
- Perform input and output operations using programs in C
- Write programs that perform operations on arrays

Course Content

Content	Hours
Unit - 1	
Fundamentals of Computers: Introduction to Computers - Computer Definition,	13
Characteristics of Computers, Evolution and History of Computers, Types of	
Computers, Basic Organisation of a Digital Computer; Number Systems – different	
types, conversion from one number system to another; Computer Codes – BCD, Gray	
Code, ASCII and Unicode; Boolean Algebra – Boolean Operators with Truth Tables;	
Types of Software - System Software and Utility Software; Computer Languages -	
Machine Level, Assembly Level & High Level Languages, Translator Programs -	
Assembler, Interpreter and Compiler; Planning a Computer Program - Algorithm,	
Flowchart and Pseudo code with Examples.	
Introduction to C Programming: Over View of C; History and Features of C;	
Structure of a C Program with Examples; Creating and Executing a C Program;	
Compilation process in C.	
Unit - 2	T
C Programming Basic Concepts: C Character Set; C tokens - keywords, identifiers,	13
constants, and variables; Data types; Declaration & initialization of variables;	
Symbolic constants.	
Input and output with C: Formatted I/O functions - <i>printf</i> and <i>scanf</i> , control stings	
and escape sequences, output specifications with <i>printf</i> functions; Unformatted I/O	
functions to read and display single character and a string - getchar, putchar, gets	
and <i>puts</i> functions.	
C Operators & Expressions: Arithmetic operators; Relational operators; Logical	
operators; Assignment operators; Increment & Decrement operators; Bitwise	
operators; Conditional operator; Special operators; Operator Precedence and	
Associatively; Evaluation of arithmetic expressions; Type conversion.	
Unit - 3	

Control Structures: Decision making Statements - Simple if, if_else, nested if_else, else_if ladder, Switch-case, goto, break & continue statements; Looping Statements -Entry controlled and Exit controlled statements, while, do-while, for loops, Nested loops.

Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays - Declaration, Initialization and Memory representation.

Strings: Declaring & Initializing string variables; String handling functions - strlen, strcmp, strcpy and strcat; Character handling functions - toascii, toupper, tolower, isalpha, isnumeric etc.

13

13

Unit - 4

Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing address and value of variables using pointers; Pointers and Arrays; Pointer Arithmetic; Advantages and disadvantages of using pointers;

User Defined Functions: Need for user defined functions; Format of C user defined functions; Components of user defined functions - return type, name, parameter list, function body, return statement and function call; Categories of user defined functions - With and without parameters and return type.

User defined data types: Structures - Structure Definition, Advantages of Structure. declaring structure variables, accessing structure members, Structure members initialization, comparing structure variables, Array of Structures; Unions - Union definition; difference between Structures and Unions.

Text Books

- 1. Pradeep K. Sinha and Priti Sinha: Computer Fundamentals (Sixth Edition), BPB Publication
- 2. E. Balgurusamy: Programming in ANSI C (TMH)

References

- 1. Kamthane: Programming with ANSI and TURBO C (Pearson Education)
- 2. V. Rajaraman: Programming in C (PHI EEE)
- 3. S. ByronGottfried: Programming with C (TMH)
- 4. Kernighan & Ritche: The C Programming Language (PHI)
- 5. Yashwant Kanitkar: Let us C
- 6. P.B. Kottur: Programming in C (Sapna Book House)

Course Code: GMA 280P	Course Title: C Programming Lab
Course Credits: 02	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 03

Practice Lab

The following activities be carried out/ discussed in the lab during the initial period of the semester.

- 1. Basic Computer Proficiency a. Familiarization of Computer Hardware Parts
- b. Basic Computer Operations and Maintenance.
- c. Do's and Don'ts, Safety Guidelines in Computer Lab
- 2. Familiarization of Basic Software Operating System, Word Processors, Internet Browsers, Integrated Development Environment (IDE) with Examples.
- 3. Type Program Code, Debug and Compile basic programs covering C Programming fundamentals discussed during theory classes.

Programming Lab

Part A:

- 1. Write a C Program to read radius of a circle and to find area and circumference
- 2. Write a C Program to read three numbers and find the biggest of three
- 3. Write a C Program to demonstrate library functions in *math.h*
- 4. Write a C Program to check for prime
- 5. Write a C Program to generate n primes
- 6. Write a C Program to read a number, find the sum of the digits, reverse the number and check it for palindrome
- 7. Write a C Program to read numbers from keyboard continuously till the user presses 999 and to find the sum of only positive numbers
- 8. Write a C Program to read percentage of marks and to display appropriate message (Demonstration of else-if ladder)
- 9. Write a C Program to find the roots of quadratic equation (demonstration of switch-case statement)
- 10. Write a C program to read marks scored by n students and find the average of marks (Demonstration of single dimensional array)
- 11. Write a C Program to remove Duplicate Element in a single dimensional Array
- 12. Program to perform addition and subtraction of Matrices

Part B:

- 1. Write a C Program to find the length of a string without using built in function
- 2. Write a C Program to demonstrate string functions.
- 3. Write a C Program to demonstrate pointers in C
- 4. Write a C Program to check a number for prime by defining *isprime()* function
- 5. Write a C Program to read, display and to find the trace of a square matrix
- 6. Write a C Program to read, display and add two m x n matrices using functions
- 7. Write a C Program to read, display and multiply two m x n matrices using functions
- 8. Write a C Program to read a string and to find the number of alphabets, digits, vowels, consonants, spaces and special characters.
- 9. Write a C Program to Reverse a String using Pointer
- 10. Write a C Program to Swap Two Numbers using Pointers
- 11. Write a C Program to demonstrate student structure to read & display records of n students.
- 12. Write a C Program to demonstrate the difference between structure & union.

Note: Student has to execute a minimum of $10\ programs$ in each part to complete the Lab course

Evaluation Scheme for Lab ExaminationAssessment Criteria Mark				
Program – 1 from Part A	Flowchart / Algorithm	02		
	Writing the Program	05		
	Execution and Formatting	03		
Program -2 from Part B	Flowchart/Algorithm	02		
	Writing the Program	05		
	Execution and Formatting	03		
Viva Voice based on C Programming	05			
To	25			

B.Sc.: Semester II

Course Code: GMB 280	Course Title: Data Structures using C
Course Credits: 04	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- Demonstrate different methods for traversing trees
- Compare alternative implementations of data structures with respect to performance
- Describe the concept of recursion, give examples of its use
- Discuss the computational efficiency of the principal algorithms for sorting and searching

Content	Hours
Unit - 1	
Introduction to data structures: Definition; Types of data structures - Primitive & Non-primitive, Linear and Non-linear; Operations on data structures. Algorithm Specification, Performance Analysis, Performance Measurement Recursion: Definition; Types of recursions; Recursion Technique Examples - Fibonacci numbers, GCD, Binomial coefficient nCr, Towers of Hanoi; Comparison between iterative and recursive functions.	13
Unit - 2	
Arrays: Basic Concepts – Definition, Declaration, Initialisation, Operations on arrays; Types of arrays; Arrays as abstract data types (ADT); Representation of Linear Arrays in memory; Traversing linear arrays; Inserting and deleting elements; Sorting – Selection sort, Bubble sort, Quick sort, Selection sort, Insertion sort; Searching - Sequential Search, Binary search; Iterative and Recursive searching; Multidimensional arrays; Representation of multidimensional arrays; Sparse matrices. Dynamic memory allocation: Static & Dynamic memory allocation; Memory allocation and de-allocation functions - malloc, calloc, realloc and free.	13
Unit - 3	
Linked list: Basic Concepts – Definition and Representation of linked list, Types of linked lists - Singly linked list, Doubly liked list, Header liked list, Circular linked list; Representation of Linked list in Memory;	13
Operations on Singly linked lists - Traversing, Searching, Insertion, Deletion; Memory allocation; Garbage collection. Stacks: Basic Concepts - Definition and Representation of stacks; Operations on stacks; Applications of stacks; Infix, postfix and prefix notations; Conversion from infix to postfix using stack; Evaluation of postfix expression using stack; Application of stack in function calls.	

Unit - 4

Queues: Basic Concepts – Definition and Representation of queues; Types of queues - Simple queues, Circular queues, Double ended queues, Priority queues; Operations on Simple queues;

13

Trees: Definition; Tree terminologies –node, root node, parent node, ancestors of a node, siblings, terminal & non-terminal nodes, degree of a node, level, edge, path, depth;

Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree and heap tree; Array representation of binary tree. Traversal of binary tree; *preorder*, *inorder* and *postorder* traversal; Reconstruction of a binary tree when any two of the traversals are given.

Text Books

1. Satraj Sahani: Fundamentals of Data Structures

References

- 1. Tanenbaum: Data structures using C (Pearson Education)
- 2. Kamathane: Introduction to Data structures (Pearson Education)
- 3. Y. Kanitkar: Data Structures Using C (BPB)
- 4. Kottur: Data Structure Using C
- 5. Padma Reddy: Data Structure Using C
- 6. Sudipa Mukherjee: Data Structures using C 1000 Problems and Solutions (McGraw Hill Education, 2007))

Course Code: GMB 280P	Course Title: Data Structures Lab
Course Credits: 02	Hour of Teaching/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 03

Programming Lab

Part A:

- 1. Program to find GCD using recursive function
- 2. Program to display Pascal Triangle using binomial function
- 3. Program to generate n Fibonacci numbers using recursive function.
- 4. Program to implement Towers of Hanoi.
- 5. Program to implement dynamic array, find smallest and largest element of the array.
- 6. Program to read the names of cities and arrange them alphabetically.
- 7. Program to search an element using linear search technique
- 8. Program to search an element using binary search technique
- 9. Program to sort the given list using bubble sort technique.
- 10. Program to sort the given list using selection sort technique.

Part B:

- 1. Program to sort the given list using insertion sort technique.
- 2. Program to sort the given list using merge sort technique.
- 3. Program to sort the given list using quick sort technique.
- 4. Program to implement Stack. (Using Linked List)
- 5. Program to implement simple queue. (Using Linked List)
- 6. Program to implement Circular Queue. (Using Linked List)
- 7. Program to implement Search an Element in linear linked list.
- 8. Program to implement Doubly linked list
- 9. Program to display traversal of a tree.

Evaluation Scheme for Lab Examination

Assessment Criteria		Marks
Program – 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	05
	Execution and Formatting	03
Viva Voice based on C Programming		05
Total		25

Question Paper Pattern: B.Sc.

b.

Duration: 2 hours Max. Marks: 60 Part A Answer any 10 questions out of 12 questions I. 10X2=201. 2. **3.** 4. 5. 6. 7. 8. 9. 10. 11. **12.** Part B Answer the following questions II. 4X10=40 **13.** a. or b. **14.** a. or **15.** a. or b. 16. a. or