B.Sc (Physics) Course Outcome

Course Content Semester - I

Mechanics and Properties of Matter

Course Title: Mechanics and Properties of Matter	Course Credits:4				
Total Contact Hours: 52	Duration of ESA: 3 hours				
Formative Assessment Marks: 40	Summative Assessment Marks: 60				
Model Syllabus Authors: Physics Expert Committee					

Programme Outcomes (POs)

- PO-1: Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.
- PO-2: Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.
- PO-3: Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- PO-4: Ethics: Apply the professional ethics and norms in respective discipline.
- PO-5: Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.
- PO-6: Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Course Articulation Matrix:

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

Course Outcomes (COs) (UGC guidelines)	1	2	3	4	5	6
CO-1: Will learn fixing units, tabulation of observations, analysis of data (graphical/analytical)	x	x				х
CO-2: Will learn about accuracy of measurement and sources of errors, importance of significant figures.	x	x	Г			
CO-3: Will know how g can be determined experimentally and derive satisfaction.	x					
CO-4: Will see the difference between simple and torsional pendulum and their use in the determination of various physical parameters.	x			х	х	x
CO-5: Will come to know how various elastic moduli can be determined.	x		Γ		х	x

13 | Page

CO-6: Will measure surface tension and viscosity and appreciate the methods adopted.	x	x			
CO-7: Will get hands on experience of different equipment.	x	x	x	x	x

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course are Marked 'X' in the intersection cell if a course outcome addresses a particular program outcome.

Semester - II

Electricity & Magnetism

Course Title: Electricity and Magnetism	Course Credits: 4
Total Contact Hours: 52	Duration of ESA: 3 hours
Formative Assessment Marks: 40	Summative Assessment Marks: 60

18 | Page

Model Syllabus Authors: Physics Expert Committee	
--	--

Programme Outcomes

- 1. Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.
- Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.
- Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- 4. Ethics: Apply the professional ethics and norms in respective discipline.
- Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.
- Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

	Course Outcomes (COs)	1	2	3	4	5	6
i.	Demonstrate Gauss law, Coulomb's law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges.	x	x				
ii.	Explain and differentiate the vector (electric fields, Coulomb's law) and scalar (electric potential, electric potential energy) formalisms of electrostatics.	x					
iii.	Apply Gauss's law of electrostatics to solve a variety of problems.	x	x			x	
iv.	Describe the magnetic field produced by magnetic dipoles and electric currents.	x					
V.	Explain Faraday-Lenz and Maxwell laws to articulate the relationship between electric and magnetic fields.	x					
٧i.	Describe how magnetism is produced and list examples where its effects are observed.	x				x	x
vii.	Apply Kirchhoff's rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.	x	x			x	x
/iii.	Apply various network theorems such as Superposition, Thevenin, Norton, Reciprocity, Maximum Power Transfer, etc. and their applications in electronics, electrical circuit analysis, and electrical machines.	x	x			x	х